Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis
نویسندگان
چکیده
Hyperpolarization-activated cyclic-nucleotide gated channel (HCN) proteins are important regulators of both neuronal and cardiac excitability. Among the 4 HCN isoforms, HCN4 is known as a pacemaker channel, because it helps control the periodicity of contractions in vertebrate hearts. Although the physiological role of HCN4 channel has been studied in adult mammalian hearts, an earlier role during embryogenesis has not been clearly established. Here, we probe the embryonic roles of HCN4 channels, providing the first characterization of the expression profile of any of the HCN isoforms during Xenopus laevis development and investigate the consequences of altering HCN4 function on embryonic pattern formation. We demonstrate that both overexpression of HCN4 and injection of dominant-negative HCN4 mRNA during early embryogenesis results in improper expression of key patterning genes and severely malformed hearts. Our results suggest that HCN4 serves to coordinate morphogenetic control factors that provide positional information during heart morphogenesis in Xenopus.
منابع مشابه
A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase.
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase as another mechanism affecting channel...
متن کاملDysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP) or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the bod...
متن کاملP 44: The Role of HCN Channels in T Cell Function
Ion channels play a major role in the regulation of T cell function in health and disease. In a computer-based model, established to simulate T cells’ membrane potential (VM) generation, we discovered a discrepancy between the simulation and patch-clamp recordings. The predicted VM was more hyperpolarized than the measured VM, indicating that a yet unknown, depolarizing ion current might ...
متن کاملFamily of prokaryote cyclic nucleotide-modulated ion channels.
Cyclic nucleotide-modulated ion channels are molecular pores that mediate the passage of ions across the cell membrane in response to cAMP or GMP. Structural insight into this class of ion channels currently comes from a related homolog, MloK1, that contains six transmembrane domains and a cytoplasmic cyclic nucleotide binding domain. However, unlike eukaryote hyperpolarization-activated cyclic...
متن کاملCation-pi interactions as a possible mechanism for controlling the closing of Hyperpolarization-activated cyclic nucleotide-modulated ion channels
The hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel gene family is known to contribute significantly to cardiac pacemaking via pacemaker currents. To date, there are four mammalian HCN isoforms (HCN1–4) identified. The importance of HCN channel function to normal cardiac automaticity in mice was recently corroborated in humans diagnosed with idiopathic sinus node dysfunct...
متن کامل